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ABSTRACT 

Recognition of Infrastructure Events Using Principal Component Analysis 
 

Lane David Broadbent 
School of Technology, BYU 

Master of Science 
 

Information Technology systems generate system log messages to allow for the 
monitoring of the system. In increasingly large and complex systems the volume of log data can 
overwhelm the analysts tasked with monitoring these systems. A system was developed that 
utilizes Principal Component Analysis to assist the analyst in the characterization of system 
health and events. Once trained, the system was able to accurately identify a state of heavy load 
on a device with a low false positive rate. The system was also able to accurately identify an 
error condition when trained on a single event. The method employed is able to assist in the real 
time monitoring of large complex systems, increasing the efficiency of trained analysts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: syslog, log analysis, principal component analysis  
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1 INTRODUCTION 

 Background 

The ability to monitor is a crucial aspect in the operation of any IT system. This is often 

done using system logs, hereafter referred to as syslog messages, which can be collected at 

significant scale. The ability for a small number of engineers and analysts to process what is an 

ever-increasing volume of log data has benefits for the IT community. 

The proliferation of cloud services, the Internet of Things, and an increasing reliance on 

information technology has resulted in massive interconnected systems. Theses systems generate 

a significant amount of log data intended to assist in the operation and troubleshooting of the 

system. The log management system utilized by Brigham Young University’s Office of 

Information Technology (BYU OIT), for example, collects millions of log messages a day. The 

volume of log data can be overwhelming for those tasked with its analysis and monitoring, 

allowing critical information to be overlooked. The information collected through logging is 

often archived and used for eventual failure analysis instead of allowing for active monitoring 

and understanding of these complex IT environments. 

Logging is often performed using messages following the Syslog (Gerhards, 2009) 

standard, standardizing the format and transmission of log messages. The Syslog message format 

requires that pertinent information about the origin of the message, such as messages severity, 
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originating process, and host, be present in all messages. This allows for information to be 

readily extracted and interpreted by an automated process, aiding in monitoring. 

Active monitoring, particularly being able to detect crucial events and determine the state 

of a system in a timely fashion, is the problem this research seeks to solve. An analyst needs to 

be able to quickly analyze a large volume of data. Experience shows that log analysis can often 

be a tedious process that requires a significant amount of time and experience in both the system 

being monitored and the log management system in use. While performing log analysis and 

monitoring, an analyst can be faced with a tough choice: limit their scope to a small number of 

systems to be monitored in detail or monitor a large number of systems for significant events -- 

often after an event has occurred. The effectiveness of an analyst can be greatly improved if a 

means of automated analysis can be used. 

A significant amount of the value of an analyst comes from his experience, or being an 

“expert” in the systems being monitored.  This experience and intuition is difficult to transfer to 

an automated process. However, there exist methods of statistical analysis that allow for insight 

without the necessity of expertise in a system. One such method is that of Principal Component 

Analysis. Principal Component Analysis, or PCA, has long been used to simplify and gain 

insight into multidimensional data.  

Principal Component Analysis (PCA) is a technique first described by Pearson (1901) 

used to emphasize patterns in data while removing emphasis from randomness in the data. It is 

also used to dimensionally reduce a dataset by allowing it to be transformed into a space where 

dimensions are aligned with the variance in the data. Dimensions that contribute the least 

variance to the data are minimized and can be ignored. PCA is similar to a linear regression 
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except that a linear regression is performed with respect to an independent variable where as 

PCA is multivariate and calculates a “best fit” describing all dimensions. 

By applying Principal Component Analysis to assist in log analysis, the method proposed 

in this paper has the potential to greatly improve the effectiveness and timeliness of analysis by 

identifying known events and states in devices. 

 Problem Statement 

With the increasing use of technology in business processes and the advent of the Internet 

of Things comes the need to monitor these technology systems. The use of log messages in 

monitoring is an established, effective, and sometimes, the only method of gaining insight into 

the health and function of a system. The manual monitoring of log messages becomes more 

impractical as the volume of logs increases, obscuring important data and overwhelming the 

analyst. An autonomous method of log analysis is needed that can determine the health state of a 

monitored system or device to provide a notification of problems. 

 Hypotheses 

Hypothesis 1 (H1): Principal Component Analysis can be used to characterize system 

health states. 

Hypothesis 2 (H2): The representative principal components can be used to characterize 

the system health state of a wireless access point from log messages. 

Hypothesis 3 (H3): The method of characterization by Principal Component Analysis can 

be used to identify known failure states in wireless access points when the failure state has been 

seen before and log data generated during the event exists in the training data. 
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Hypothesis 4 (H4): The method of characterization by Principal Component Analysis can 

be used to identify a wireless access point that is overloaded by a high number of connected 

clients. 

 Hypothesis 5 (H5): The Principal Component Analysis characterization of a wireless 

access point can be used to identify unknown failure states from the log messages. 

 Definitions 

Covariance – Covariance provides a measure of the strength of the correlation between two or 

more sets of random variates. (Weisstein, 2016) 

Eigenvector –A non-zero vector, 𝜈𝜈, corresponding with an eigenvalue, 𝜆𝜆, which satisfies the 

linear equation (𝐴𝐴 − 𝜆𝜆Ι)𝜈𝜈 = 0 where A is a square matrix. Also known as a characteristic vector. 

Eigenvalue – The corresponding scalar, 𝜆𝜆, associated with an eigenvector. 

Log Aggregator – A host or system that receives syslog messages from numerous systems. 

Principal Component Analysis – A multivariate statistical analysis technique used to 

dimensionally reduce data in order to examine its underlying structure and patterns. 

Syslog – A structured message format standardized in RFC 5424 used to convey and record 

system log information. 

Wireless Access Point – A network device bridging Ethernet and 802.11 wireless networks, 

allowing wireless clients access to the Ethernet network. 
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 Justification 

The volume of log data produced in an enterprise environment and the importance of the 

systems generating those logs continues to grow. For this data to be useful it must be analyzed, 

often by hand, a task made more difficult by the large volume of data. A system to provide real 

time, actionable analysis based on machine learning would reduce the burden of monitoring and 

analysis of these systems. 

 Summary of Proposed Methodology 

In order to test the hypotheses, a dataset of log messages will be collected from a research 

partner with a large number of log producing devices. A learning and classification algorithm 

will then be implemented using principal component analysis. This algorithm will then be 

validated using manually classified data from within the sample dataset. The algorithm will be 

applied to unknown data in order to test classification of hereto-unknown data.  

1.6.1 Collection of Log Data 

A research partnership with Brigham Young University’s Office of Information 

Technology (BYU OIT) provides access to a log aggregation and search service with log 

messages from a large number of wireless access points. By using the OIT record of wireless 

access point issues, instances of access points in states of normal and abnormal operation were 

identified. Additionally, manual analysis and classification was used to identify and classify 

instances of particular system states and events of interest. The logs leading up to these instances 

are used as training data to generate basis features and allow the classifier to identify similar 

instances. 
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1.6.2 Implementation of Learning and Detection Algorithm 

The classifier uses principal component analysis to calculate a set of basis vectors, the 

principal components, that best describe the variance in the training data. The resulting 

components are used to classify the logged event relative to the training data.  The detection 

method used is novel in its application, allowing for existing knowledge to serve as a basis for 

the work and proofs presented by others to demonstrate the mathematical truth of the approach. 

The validity of the detection algorithm will be verified with a generic, numerical dataset prior to 

it being applied to log data. 

1.6.3 Creation of Summary Vectors 

Using the existing log management system to obtain information about the log messages 

received, summary vectors will be created that summarize groups of messages within a given 

time frame. These summary vectors will consist of information, such as message severity, 

extracted from the messages.  The fields the summary vectors will be chosen to avoid specific 

information that might bias a test. In a further attempt to avoid biased result the field counts are 

divided by the total count of messages within the time frame to maintain a consistent range of 

values. 

A summary vector based entirely on message severity counts might take the following 

form for a group of 30 messages with 23 messages with a severity of six, five with a severity of 

five, and two with a severity of three. 

𝑣𝑣 = [0 0 0 1
15 0 1

6
23
30 0]    (1-1) 
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1.6.4 Verification of Learning and Detection Algorithm 

Using a training set created through manual classification, the classifier is trained on 

known data. To confirm correct operation, the classifier then classifies the training data. A 

feedback loop, manual or otherwise, is used to correct and tune the classifier. 

The trained classifier is then presented with data that has been manually classified but is 

absent from the training data. This allows for further verification as well as determination of the 

detection rates. 

1.6.5 Application of Learning and Detection Algorithm to Live Data 

The classifier will be applied to unclassified data. This allows the classifier to be 

demonstrated in a real world situation.  

 Scope 

This research will be limited to the analysis and classification of syslog data generated by 

Xirrus wireless access points. 

 Delimitations 

The following are outside the scope of this research. 

1.8.1 Log Generation 

The log data used in this research is defined by the manufacturer of the equipment 

generating the log messages. The generation and format of these messages is beyond the scope of 

this research. 
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1.8.2 Data Indexing, Storage, and Search Engine 

The topic of indexing, storage, and search engines for log data is outside of the scope of 

this research. The described classification engine is abstracted from the log aggregation system. 
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2 LITERATURE REVIEW 

 Log Analysis Through Machine Learning 

Veeramachaneni et al. (2016) demonstrated the effective use of supervised machine 

learning in the detection of cyber attacks. Their AI2 system used an analyst-in-the-loop to 

classify a subset of events, providing feedback for the machine-learning algorithm. Using this 

system, AI2 was able to achieve > 86% detection rate and a 4.4% false positive rate. 

The approach used by AI2 utilizes an analyst in the loop feed back mechanism. The 

analyst is presented with a sample set of outlier events, which are classified, or labeled, by the 

analyst. These classified events are feed back into the learning model. This model is then used to 

detect events and create a subset of events to be presented to the analyst as part of the next 

iteration.  

 Principal Component Analysis  

There exist methods of statistical analysis that allow for insight without the necessity of 

expertise in a system. One such method is that of Principal Component Analysis. Principal 

Component Analysis, or PCA, has long been used to simplify and gain insight into 

multidimensional dataset.  

Principal Component Analysis is a technique used to emphasize patterns in data while 

removing emphasis from randomness in the data (Pearson, 1901). It is also used to dimensionally 
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reduce a dataset by allowing it to be transformed into a space where dimensions are aligned with 

the greatest variance and dimensions that contribute the least variance to the data are minimized 

and can be ignored. PCA is similar to a linear regression except that a linear regression is 

performed with respect to an independent variable where as PCA is multivariate and calculates a 

“best fit” describing all dimensions. 

 

 
Figure 1 Plot Showing Comparison Between Regression Lines and Lines of Best Fit 

 

Through PCA the data can be expressed as linear combinations of principal components. 

These principal components represent and are aligned with the variance in the data, with the 

most significant of the principal components representing the greatest amount of variance. The 

subsequent principal components each represent the highest possible amount of variance while 

orthogonal to the preceding principal components. The lesser principal components often 

represent considerably less variance than the more significant principal components. Because 

these lesser principal components represent the smallest amount of variance in the original data 
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they can often be ignored and the remaining components used to represent the original data with 

a high degree of fidelity in a lower dimensional space.  

To demonstrate the steps of PCA the 2 dimensional example dataset 𝑋𝑋 is used. The 

example dataset was created so that the points would all lie along a line, with slight variations for 

illustrative purposes. 

 

 
Figure 2 Plot of Example Dataset X 

  

   𝑥⃗𝑥1 = �. 1
0 � 𝑥⃗𝑥2 = � 2

2.1� 𝑥⃗𝑥3 = �4.9
5.1� 𝑥⃗𝑥4 = � 7

6.9�          (2-1) 

𝑋𝑋 =  �
. 1 0
2 2.1

4.9 5.1
7 6.9

� 

The mean of each variable in 𝑋𝑋 is calculated and subtracted from each element of that variable, 

leaving the dataset whose mean value is at the origin. In the example this centered dataset is 𝐴𝐴. 

𝐴𝐴 =  �
−3.4 −3.525
−1.5 −1.425

1.4 1.575
3.5 3.375

�         (2-2) 
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From a set of vectors arranged in an 𝑚𝑚 × 𝑛𝑛 matrix, 4x2 in the example dataset, a covariance 

matrix, 𝑆𝑆, is calculated. The covariance of two variables is a measure of how much those 

variables change together and can be calculated with the following: 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) =
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

(𝑛𝑛 − 1)   

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑟𝑟 𝑋𝑋� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     (2-3) 

 

The sample dataset has the following covariance matrix, 𝑆𝑆: 

𝑆𝑆 =  �9.34 9.38
9.38 9.4425�       (2-4) 

Using the covariance matrix, 𝑆𝑆, the eigenvectors, 𝑣𝑣, and eigenvalues, 𝜆𝜆, are found by 

solving the linear equation: 

(𝑆𝑆 − 𝜆𝜆Ι)𝜈𝜈 = 0          (2-5) 

The resulting eigenvectors point in the directions of variance in the original dataset, and 

are the components of the data. The resulting eigenvalues indicate the amount of variance 

accounted for by the corresponding eigenvector. Solving for the eigenvectors and eigenvalues for 

the covariance matrix, S, from the example dataset results in the following: 

𝑣𝑣1 = � 0.7051
−0.7090� , 𝑣𝑣2 = �0.7090

0.7051� , 𝜆𝜆 = �18.7714
0.0111 �    (2-6) 

The eigenvectors form the basis for the space that data will be projected onto, with the 

axis of the eigenspace aligned with the variability in the original data. Using a projection matrix, 

W, derived from the eigenvectors, the centered example data, A, can be projected onto the 

eigenspace, resulting in B. 
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𝐵𝐵 = 𝐴𝐴 × 𝑊𝑊 

𝑊𝑊 = �0.7051 −0.7090
0.7090 0.7051 �, 𝐵𝐵 = �

−4.8969 −0.0750
−2.0681 0.0586
2.1039 0.1179
4.8610 −0.1016

�        (2-7) 

 
When the example data is projected without reducing the dimensionality of the 

eigenspace the original data can be recovered through an inverse transform. 

However, a benefit of PCA is the ability to reduce the dimensionality of data while 

retaining the ability to accurately represent the data. To demonstrate this the example data, for 

which the first principal component represented far greater variability than the second, is 

transformed onto a 1-dimensional eigenspace, resulting in B. 

𝑊𝑊 = �0.7051
0.7090�, 𝐵𝐵 = �

−4.8969
−2.0681
2.1039
4.8610

�     (2-8) 

The data is now represented in relation to an eigenvector that in the original space 

pointed in a direction roughly in line with the original 2-dimensional example dataset. 

Attempting to recover the original values through an inverse transformation results in the matrix 

C. The values of C are plotted alongside the original dataset, A, in figure 3. 

𝐴𝐴 =  �
. 1 0
2 2.1

4.9 5.1
7 6.9

�  ,𝐶𝐶 = �
0.0468 0.5289
2.0416 2.0586
4.9836 5.0167
6.9279 6.9716

�       (2-9) 
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Figure 3 Plot of Original Example Data Before and After PCA 

 

The resulting dataset, C, was represented by a reduced number of dimensions while 

introducing only a small amount of error. PCA can be applied to larger dimensional datasets to 

allow for dimensional reduction and gain insight into the data. An example of PCA being used 

on a 3-dimensional dataset to gain insight into the data is figures 4 and 5, where a plane is 

generated from the principal components in the directions of greatest variance in the data.  

 

 

Figure 4 Plot of Large, Seemingly Random, 3 Dimensional Dataset 
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Figure 5 Plot with Plane Defined by the First 2 Principal Components of the Dataset 

 

Alternatively, it is possible to use Singular Value Decomposition to calculate the 

eigenvectors and eigenvalues directly from the centered dataset. Singular Value Decomposition 

yields an identical result and is used for its efficiency by many PCA libraries. The library utilized 

by the proof of concept system uses SVD. 

As a result of PCA the original data is now represented by underlying relationships in the 

data. Furthermore, by eliminating minor components we are able to represent the data in a lower 

dimensional space while choosing the amount of variance in the original data we want to 

represent. 

 Eigenfaces 

The use of principal component analysis, or PCA, for anomaly detection and 

classification is not a novel approach. Existing applications of the analysis method have proven 

effective both within information technology and in other fields. The existing applications and 

the generality of PCA provides confidence that PCA can successfully be applied to 

characterizing system log data.  
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A notable example of the effectiveness of PCA is that of eigenfaces for facial 

characterization, storage, and identification. In the seminal paper “Low-dimensional procedure 

for the characterization of human faces” (Sirovich & Kirby,1987) it was demonstrated how PCA 

can be used to characterize and compress an image of a human face. By using PCA on a 

collection of face images, a set of basis features were formed and used to represent the face 

image as a low dimensional vector. The computed bases and vector could then be used to 

reconstruct the original image with a high degree of accuracy.  

 

 
Figure 6 A Sample of Eigenfaces with Each Face Representing a Component in Cigenspace 

 

The PCA approach to representing faces was later applied in “Eigenfaces for recognition” 

(Turk & Pentland, 1991a) to facial recognition. By using a standard set of bases, referred to as 

reference faces, it was shown that a previously seen individuals face could be identified and 

reconstructed even while partially obstructed. The ability to identify an individual when shown 

an image that is approximately the same, obstructed, and containing other noise, shows the 

strength of the approach as a method of characterization. 
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The eigenfaces approach to facial recognition as described by Turk and Pentland (1991b) 

has two main stages, initialization and recognition. The initialization, or training stage requires 

that a training set of images be acquired. The eigenfaces, each representing a component in 

eigenspace, of this training set are calculated and the eigenfaces pruned to the number of 

dimensions desired. Images of known individuals are then projected into the space defined by the 

remaining eigenfaces, recording the results as weights of the eigenfaces. 

 

 

Figure 7 A Simplified Version of Face Space to Illustrate the Results of Projecting 

 

The recognition step is performed by first projecting an image onto the space (Fig. 7) 

defined by the M eigenfaces. Face recognition is then achieved by calculating the Euclidean 

distance to the nearest neighbors in eigenspace. 

This approach also demonstrates some computational advantages. By using PCA to 

dimensionally reduce the data, an image in the case of eigenfaces, the computational 

requirements of classification are greatly reduced. The computational requirements are such that 

Turk and Pentland note that the training steps could “be performed from time to time whenever 

there is free excess computational capacity”(1991a). Similarly, by representing the data as a low 

dimensional vector, the resources required for storage and transport are reduced.  
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 Stock Market Analysis 

Another notable example of the use of PCA and eigenvectors is in characterizing the 

behavior of the stock market, as demonstrated in "Quantifying and interpreting collective 

behavior in financial markets." (Gopikrishnan, Rosenow, Plerou, & Stanley, 2001) It is shown 

that by analyzing and representing the trading behavior of individual stocks as eigenvectors that 

stocks could be partitioned into market segments with a high degree of accuracy. Stocks of 

distinct market segments (e.g., Paper or banking) could be identified by eigenvectors that would 

deviate from the normal for stocks of that market segment. It was also shown that in the analysis 

performed that there were eigenvectors that were correlated with market capitalization and 

portfolio returns.  
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Figure 8 Contribution to Industry Sector of Eigenvector u For The Deviating Eigenvectors 

 

 Analysis of Machine Generated Data 

PCA has been applied to problems within the domain of information technology. When 

PCA is applied to log data it is often to a specific, structured, type of data, such as NetFlow. The 

use of structured data lends itself more easily to the techniques such as PCA. PCA can also be 

applied to non-specific data in “Mining Console Logs for Large-Scale System Problem 

Detection”. 

In “Mining Console Logs for Large-Scale System Problem Detection” (2008) Xu et al. 

combine text mining, PCA, and decision trees to detect anomalies in logs and then present them 
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to a human operator. The goal of their system is to provide a systematic method of detecting 

important information amongst the large amount of data contained in log messages, especially in 

large systems. 

Their system uses PCA as an intermediate step to perform anomaly detection. In order to 

perform the anomaly detection, the algorithm is provided with vectors representing message 

counts corresponding with a specific message format. The result of PCA on the message vectors 

is then used for anomaly detection based on their dimensionality.  

A space is defined that spans all message formats for the software being observed. In 

order to enumerate all possible messages, the authors examined the source code of the program 

being monitored. By examining the source, it is possible to determine every possible message 

that might be generated, along with variable values and meanings. This comprehensive approach 

ensures that every possible message is accounted for but requires extensive interaction.   

While the authors present the system as one that does not require prior input from the 

operator, this system would still require someone with knowledge of the system to group the 

messages before the system could be used.  
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3 METHODOLOGY 

 Extend Current Technologies 

The current systems for log aggregation and analysis are highly effective at presenting data 

to analysts and performing basic analysis to be consumed by an analyst.  These systems are 

increasingly complex and require skilled operators to interpret the results.  

By extending the methodology used for face detection and recognition in “Eigenfaces for 

recognition” (Turk & Pentland, 1991a), the proposed system will allow for the detection and 

classification of system events. In doing so, the burden of the analyst will be reduced and 

automated detection and response is facilitated. 

The proposed system improves on the work of Xu et al. (2008) in allowing for greater 

flexibility in the system being monitored. Xu et al. utilized source code analysis in order to fully 

enumerate and account for all possible messages. By instead utilizing generic features from log 

messages, the proposed system is able to be implemented without a time consuming analysis of 

source code while also being able to adapt to changes in log messages and formats. 

Instead of attempting to implement the classification engine within a particular log 

aggregation system or attempting to implement a log aggregation system, the classification 

engine consumes data from a separate log aggregation system. By abstracting the classification 
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engine from the log aggregation system the classification system becomes log aggregator 

agnostic. 

 Classification Engine 

The classification engine analyzes log data and attempts to classify the device state based 

on training data. It consists of two main components, the trainer and the classifier. Both 

components use, as input, a vector referred to as the summary vector, which summarizes syslog 

message feature counts over an arbitrary time window. 

3.2.1 Summary Vector Construction 

Prior to analysis, data must be represented as a vector. To construct this vector, log 

messages are queried by source device in five-minute buckets. The messages contained in these 

buckets undergo feature extraction to extract specific attributes of the data that are then 

summarized as counts for the time bucket.  

 

 
Figure 9 Diagram of the Summary Vector Construction Process 
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The extraction of features is performed by the log aggregation system at ingestion and 

stored with the message. This allows for the counts to be aggregated by the log management 

system and a summation of feature counts returned for a time bucket as part of a query.  

The sum of these features is used to construct a vector representing the time bucket and 

device pair. These summary vectors are used in both the training and characterization steps. In 

the proof of concept system, the time-framed summaries are represented as 30 dimension vectors 

consisting of summary counts of the features for the device in a five-minute time window. 

The summary vector is constructed from counts of the properties of the messages as follows. 

 

Table 1 Summary Vector Fields 

Property Dimensions Contributed 

Counts of the 8 severity levels as defined in RFC 5424 (Gerhards, 2009) 8 

Counts of messages associated with each of up to 8 internal access 
points in the wireless access point 

8 

Count of all messages associated with an internal access point 1 

Count of all distinct wireless clients, identified by MAC address, 
recorded in messages 

1 

Count of client authentications 1 

Count of client deauthentications 1 

Count of client associations 1 

Count of client association related messages that occurred with the 
exception of association messages 

1 

Count of client disassociations 1 

Count of client disassociation related messages that occurred with the 
exception of disassociation messages 

1 

Count of client reassociations 1 

Count of client reassociation related messages that occurred with the 
exception of reassociation messages 

1 

Count of client timeouts 1 

Count of signal level warning messages 1 

Count of rate change messages 1 

Count of IDS events reported by the access point 1 
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A combined count of all severity levels, effectively a count of all log messages is used to 

normalize the vector. The purpose of the normalization is to minimize the perceived differences 

between two devices behaving similarly but generating different amounts of messages. 

Due to the initial lack of classified vectors, it is necessary for a training step where some 

are classified manually. By identifying some summary vectors as representing the device during 

a known problem or state, this information can then be used in the training and classification 

steps. It is also possible, once a single vector has been classified, to utilize the classifier’s ability 

to detect outliers to quickly train the classifier using analyst feedback. 

3.2.2 Trainer 

The trainer must perform two actions. First it must perform PCA on a large number of 

summary vectors in order to calculate the principal components of the data. This step only needs 

be performed once. Second is the transformation of the training data, consisting of manually 

classified summary vectors, into the eigenspace computed as part of PCA. 

 

 
Figure 10 Diagram of the Classifier Training Process 

 

The performing of PCA is by far the most computationally intensive step. To train the 

classification engine, an 𝑚𝑚 × 𝑛𝑛 event summary matrix is created consisting of n-dimensional 
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summary vectors. The row vectors of the matrix contain all summary vectors for the test being 

run. The use of a larger number of vectors allows for a greater amount of variability to be 

represented by components resulting from PCA. The principal components are computed in 

order to determine a set of vectors that represent the variability in the original data. These 

components provide us with a set of basis vectors that we can use to transform the summary 

vectors onto a space where they can be more easily represented. By eliminating the components 

that represent the least amount of variance, the dimensional complexity of the transformed data 

can be reduced. To train the classifier, the manually classified vectors are transformed to project 

the vectors onto the eigenspace defined by the components. These known transformed vectors 

are preserved to be used later by the classifier. 

3.2.3 Classifier 

The classification engine analyzes log data and attempts to classify the device state based 

on training data. This is accomplished by transforming the summary vectors from a device onto 

the eigenspace computed by the trainer. The summary vector is then classified using the 

Euclidean distance to the nearest training data vector in the eigenspace. The summary vector is 

then classified as the same class as that of the nearest training points. 

The Euclidean distance is also recorded, allowing for filtering and outlier detection. By 

setting a threshold for classification, the sensitivity of the classifier can be adjusted.  
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Figure 11 Diagram of the Classification Process 

3.2.4 Log Parsing 

Log message formats are varied even when conforming to RFC 5424 (Gerhards, 2009). 

Software changes, or rare events, can generate messages that a log analysis system or analyst 

might not be able to interpret. The method proposed by Xu et al. (2008) requires that the full 

message space be enumerated through source code analysis and would be unable to utilize 

unknown messages. The source code of any monitored process would need to be reviewed after 

patching or upgrade to ensure messages continue to match the formats known to the system.  

The proposed method allows for meaning to be extracted from both common attributes of 

log messages as well as obscure or even unknown messages, without having to have expert 

knowledge of the system. In order to do this, log messages must be parsed to obtain enough 

message attributes to contribute to the summary vector in a meaningful way. 

A typical log message from a XIRRUS access point may be similar to the following: 

<15>Apr 11 12:41:08 FAUX-345-678-AN1 : debug    : Station 
ee:e6:ad:ff:e1:22 (Intel), IAP iap2: authentication packet sent (3-1) 
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Using both well known log format standards and context, this log message can be broken 

down into a summary that can be combined with information from both similar and dissimilar 

log messages to create a meaningful summary vector. 

Roughly following the format defined in RFC 5424, the message can be separated into a 

header section and a message section. The header contains the message priority, message 

timestamp, and hostname of the log source. The message section contains information from the 

application in a format defined by the application creators. In this particular log message from a 

wireless access point, the message section contains the message severity, records the MAC 

address of a wireless client and the internal access point on the device it connected to, and finally 

the action performed by or on the client that caused the message to be generated. 

The developers of the application define the message format, which presents the 

possibility that messages with unknown fields may be observed. To be able to account for these 

rare occurrences without knowing their format, fields from both the message section as well as 

the syslog header are used to generate summaries. The fields used were selected by observing a 

large amount of data and choosing fields that were universally present in a message, such as 

severity, often present in a message, client MAC address, and rarely present, an IDS alert. A 

single message could potentially be accounted for in multiple elements of the summary vector. 

Ultimately, the number of features used to perform analysis is variable and up to the 

discretion of those implementing the classifier. While reducing the number of features used can 

have a significant impact on performance, the use of PCA provides for a separate means of 

dimensional reduction allowing for a very large number of features to be represented by a very 

small number of dimensions, if desired. This allows for flexibility in the implementation of the 

classification engine to account for storage and computational resource limitations. 
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By offloading the parsing and extraction to a log aggregation system as part of its normal 

operation, the desired data can be stored and made retrievable as it is generated, significantly 

reducing the runtime resources required to perform classification. The use of a log management 

system also increases the rate at which algorithmic changes can be evaluated. 

 Test Environment and Training Data 

The test environment is the wireless network infrastructure of Brigham Young University. 

The training of the classifier requires samples of logs from as wide a range of operating 

conditions as possible. To obtain a broad range of data, summary vectors for devices covering a 

five-minute window were calculated for all of 2015 and used to populate the sample space for 

the PCA step. Training data was then obtained by manually analyzing log data to find periods of 

time during which the device in question was a particular state of interest for the test. The time 

periods encompassing the events are manually classified to describe the event recorded and 

added to the training set for the test. 
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4 IMPLEMENTATION 

 Log Management and Data Storage 

The proposed method of message classification requires a method of storing and retrieving log 

data. However, none is proposed as the proposed method of message classification is intended to be log 

management system agnostic. In order to satisfy the need for a log management system, the infrastructure 

currently in place at BYU OIT, comprised of Elasticsearch and Logstash, was used. Elasticsearch and 

local files were used to store data from intermediate steps and provide fast access to that data. The 

existing log management system utilizes Logstash to collect and parse incoming logs in real time. The 

existing parsing rules were left in place and extracted data utilized. 

 Computational Resources 

The log management system for BYU OIT is hosted in a virtual environment. In order to 

most efficiently interact with the log management system, all computation was performed in the 

same virtual environment. The computational resources required to perform the classification 

were drawn from the available pool of the virtual environment. 

 Parsing 

The existing log management system was used to collect and parse the incoming log 

messages. This log management system uses a series of pattern matching steps to classify and 
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extract useful information from the log messages. This extracted data is stored along with the 

message in Elasticsearch for later search and recall. 

 Summary Vector Construction 

The parsing performed by the log management system does not provide all of the features 

required. In the summary vector construction step, the stored data is queried and processed to 

obtain the necessary features.  

During the initial training phase, summary vectors are generated en masse on all available 

historical data. Due to the large amount of data stored in the log management system, and in 

order to reduce the load on the log aggregation system, queries are filtered by building and 

restricted to a one-hour period. Within this one-hour period, results are separated by device and 

returned in five-minute buckets.  

 Training 

During training, the n-dimensional summary vectors previously constructed are queried 

and formed into 𝑚𝑚 × 𝑛𝑛 matrix of 𝑚𝑚 summary vectors.  The computation of principal components 

is performed using a Python program utilizing the open source scikit-learn library (Pedregosa et 

al., 2011). All manually classified summary vectors in the training set are transformed into 

eigenspace and stored in Elasticsearch or locally for use in the classification process. 

 Classification 

Once transformed, a new summary vector is compared to training set summary vectors 

that were previously classified. The Euclidean distance is then calculated to the nearest training 

set vector in the eigenspace. If the Euclidean distance to the nearest neighbor is below the 
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threshold for classification, the summary vector is classified as the classification of its nearest 

neighbor. This is similar to the method used by Turk and Pentland (1991b) to perform face 

identification.  

 Verification 

For events that have been manually classified as part of a test set, the classifier performed 

verification of the results. For events that have not been manually classified, an analyst verified 

the classification. 

 Retraining 

Once a data point is verified, it can then be used as part of the training set. Classifying a 

summary vector allows it to be used in the classification step for future events. During retraining, 

the calculation of principal components does not need to be repeated and the previously 

computed principal components may be used. 

 Test For Load Detection 

The goal of this test was to determine if the classifier can detect a high transient load on 

an access point. In doing so, the hypothesis that PCA can be used to characterize the health of a 

system (H1) was tested. The test was also to determine if PCA can be used to identify an 

overloaded wireless access point (H4). 

4.9.1 Sample Set 

Data was taken from two wireless access points along popular staircases leading to the 

BYU-Provo campus. One of these devices, Device A, services part of the main staircase in the 
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BYU Life Sciences Building, and the other, Device B, the main staircase in the BYU Tanner 

Building. These access points experience significant increases and decreases in mobile client 

activity at predictable intervals. Figure 12 shows an instance of Device A experiencing a sudden 

increase in log activity, coinciding with increased wireless client activity. The several thousand 

logs generated in the period shown in figure 12 are represented by a small number of summary 

vectors.  

 

 
Figure 12 Chart of Log Message Count per Minute on Device Showing Heavy Load 

 

A training set was constructed by manually identifying samples from periods of high load, 

low load, and from the middle of the night. Of the two access points, Device A was selected to 

provide the dataset used for training. From this access point, 200 summary vectors were 

manually classified: 100 were classified as high load, 60 as normal load, and 40 as night load. 

The classified vectors were split in two, with 100 to serve as training data, and 100 to be used to 

test the classifier. 

From the second access point, Device B, 100 events were manually classified. Of these 

events, 50 were peak load, 30 normal load, and 20 night load. All of these 100 events were used 

to test the classifier. 
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Figure 13 Location of Device A in the Life Sciences Building on the BYU Campus 

 

 
Figure 14 Location of Device B in the Tanner Building on the BYU Campus 
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4.9.2 Test Procedure 

Four separate tests were run in order to examine the characteristics of the classifier and 

determine how it might function in a multi-device environment. The first tested the classifier 

under ideal conditions where both the training data and the test data came from the same device. 

The principal components were calculated using all summary vector data from 2015 for Device 

A. The classifier was then trained using 100 manually classified summary vectors from Device A. 

The classifier then attempted to classify the 100 summary vectors in the test set for Device A. 

The detection threshold of the classifier was set to a sufficiently high value as to allow all 

summary vectors to be classified. 

Due to the initial computational cost of computing the components for a large number of 

devices, it is desirable that the resulting transform and classifier be portable. Being able to 

accurately classify summary vectors from previously unseen devices would remove the need to 

perform PCA on a new dataset and retrain the classifier. To test the portability of a trained 

classifier to unknown devices, three additional tests were performed that incorporated data from 

Device B. 

The first of these tests attempted to classify a device, Device B, which was unknown to 

the classifier. The principal components used by the classifier were calculated using a year’s 

work of data from Device A. The training set was also from Device A. The classifier attempted 

to classify the test data set from Device B. 

Next, a combined dataset from both Device A and Device B was used to calculate the 

principal components used by the classifier. The goal of this test was to determine how 

additional devices affect accuracy.  While a year’s worth of summary vectors from both devices 
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was used when computing principal components, only training data from Device A was used. 

The classifier attempted to classify the test data from Device A. 

Finally, a test was run to determine the accuracy of the classifier from the previous test 

when classifying test data from Device B. 

  Table 2 Test Parameter Matrix 

Test # Device used to compute 

principal components 

Device trained on Device classified 

1 A A A 

2 A A B 

3 A,B A A 

4 A,B A B 

 

4.9.3 Verification 

The classifier results were evaluated with respect to both the accuracy of the classifier and 

the effect of varying the number of components used on the accuracy of the classifier. Utilizing a 

known test set allows the true and false classifications to be determined by the classifier, 

providing a measure of accuracy. The accuracy is defined as the sum of true positive and true 

negative results over the total number of results. By applying the classifier for varying numbers 

of components, and therefore dimensions, the effect of dimensional reduction on the accuracy of 

the classifier can be measured. 
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 Test for Known Failure Detection 

The goal of this test is to determine the ability of a trained classifier to correctly classify 

failure events that have been previously observed. The hypothesis that PCA can be used to 

characterize the health of a system (H1) was tested. The hypothesis that PCA can be used to 

identify a known failure state when trained on the failure (H3) was tested. 

4.10.1 Sample Set 

A failure event was located in the syslog data for which there were multiple occurrences. 

A single instance of this failure, a failure resulting in the device restarting, was manually 

classified and used to train the classifier. The classifier was also trained on the 100 summary 

vector training set used for the previous tests. Six additional instances of the failure event were 

found and used to verify the results of the classifier. 

4.10.2 Test Procedure 

The classifier was trained on the 101 summary vector training set representing the 3 

original classifications as well as an additional class consisting of a single summary vector from 

a power failure event. The detection threshold of the classifier was set to a sufficiently high value 

as to allow all summary vectors to be classified. 

The classifier attempted to classify all summary vectors for the access point of interest a 

total of 73,141 summary vectors. The ability of the classifier to correctly classify known power 

failures was evaluated to determine the accuracy of the classifier. 
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4.10.3 Verification 

The classifier results were evaluated to determine the classifier’s ability to detect similar 

occurrences of the event on which it was trained.  The classifier’s detection ability was measured 

by quantifying its sensitivity, measured as the percentage of actual occurrences of the event 

correctly detected. 
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5 RESULTS 

 High Load 

5.1.1 Sample Set / Training Data 

A wireless access point was chosen that regularly experienced a high volume of transient 

clients due to its location along a major staircase providing access to the BYU campus. This 

device would experience a peak of activity generally lasting around 10 minutes and beginning 

around 10 minutes before the hour during the week. Between these peaks and in the evening, the 

device would experience significantly less activity. From the summary vectors for this access 

point, 200 data points were manually classified to be used as training and test data: 100 peak load, 

60 off peak load, and 40 night load. The data was split in half, with half being the training set 

and half the test set. With the goal being to identify periods of peak load, half of the events (50 in 

both the training and test set) were from periods of peak load and half from periods of lesser load.  

5.1.2 Computational Requirements 

The initial computation of the principal components was the most significant limiting 

factor to the ability for this technique to scale.  This technique relies on a large dataset consisting, 

in this case, of all available data points in order to ensure that the principal components of the 

data can accurately be computed. The logs from one of the devices in the dataset resulted in 

approximately 73,000 summary vectors over the course of a year. To compute the principal 
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components for a dataset derived from all of the devices on the network, would require a 

prohibitively large amount of computational resources. The resulting principal components can 

be reused indefinitely by the classification engine. 

The conversion of log data into the five-minute summaries is able to run in real time, if 

not limited by the log aggregation system. 

The CPU and memory requirements for classification are very low and could be easily 

distributed. The actual classification, performed after the generation of the summary vectors, 

requires the summary vector be multiplied by the transformation matrix, followed by the 

Euclidean distance being calculated to transformed training events. 

5.1.3 Dimensional Reduction 

All summary vectors from 2015, for the device or devices represented in tests, were used 

to calculate the principal components used to define the eigenspace. The calculation of the 

principal components was limited to a maximum of 30 components, equal to the dimensionality 

of the summary vectors. The accuracy of the classifier was evaluated with varying numbers of 

components.  

 

 
Figure 15 Explained and Cumulative Explained Variance w.r.t. Number of Components 
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The first principal component in all test configurations represented greater than 60% of 

the explained variance, with the explained variance represented by subsequent components 

quickly dropping to insignificant levels, as shown by the explained variance plot in figure 15. By 

the 25th component, ordered by the variance explained by the component appears to be, at least 

partially, the result of floating point math error. Additionally, there appears to be no benefit from 

more than 22 components in any test configuration. In some instances, additional components 

resulted in increased error, as shown by the decrease in accuracy in figure 16. 

  

 
Figure 16 Results of Test 1:Accuracy of Classifier w.r.t. Number of Components 

 

A significantly reduced number of components were found to be able to represent the 

data without a significant reduction in the accuracy of the classifier. This allowed for a lower 

number of dimensions than the original dataset to be used to represent the data, reducing storage 

and computational requirements. 

5.1.4 Accuracy in Determining Load 

In a test, Test 1, attempting to identify periods of heavy load on a single device, device A, 

while having trained the classification engine on that same device, the classification engine 

proved to be accurate. As shown in figure 16, the classification engine was able to consistently 
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classify a time period as high load or not, with rates of 90% or above when representing data 

using 8 or more components. When using fewer than 8 components the results fluctuate, 

reducing confidence in the actual accuracy. In this test, the rates of false positive and false 

negative classification roughly equal as shown in figure 17.  

 

 
Figure 17 Results from Test 1: Classification w.r.t. Number of Components 

 

5.1.5 General Application of Single Device PCA 

It was found that the classifier could be trained on one device and used to classify 

summary vectors on a second device, previously unknown to the classifier. In Test 2, when used 

to classify summary vectors from Device B as high load or not, a classifier trained on Device A 

was able to consistently achieve accurate classification rates of 85% to 86% when representing 

data using 8 or more components.  
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Figure 18 Results of Test 2: Classification w.r.t Number of Components 

 

Test 4, utilizing the summary vectors from both devices when computing the principal 

components, had similar results to Test 2 when classifying summary vectors from Device B. As 

shown in figures 18 and 19 the classification rates are similar between Test 2 and Test 4, 

respectively, when using more than 8 components.  

 

 
Figure 19 Results of Test 4: Classification w.r.t Components Used 

 

Finally, Test 3, in which data from both devices was used to calculate principal 

components and summary vectors from Device A were classified, yielded similar accuracy and 

classification rates to those found in Test 1. 
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Figure 20 Results of Test 3: Classification w.r.t Components Used 

 

The results of these test show that the classifier is portable in that is can be used to classify 

summary vectors from unknown devices.  

 Identification of Unknown Failures 

It was not possible to use the classifier to determine that a device was in an unknown 

state. While attempting to train the classifier using a manual feedback loop, observations were 

made about the behavior of the classifier. It was found that the classifier was not effective in 

detecting when a system is in an unknown state.  

When classifying events from the wireless access points, all summary vectors could be 

classified as either experiencing heavy load or not experiencing heavy load. This is because all 

devices are in one of the two states at all times. Due to this, the classifier is always able to assign 

a class to a summary vector that might also represent an otherwise unknown state. 

 Classification of Known Failure States 

Using a single manually classified instance of a failure state, the classifier was able to 
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73,141 summary vectors, the classifier was able to classify all 6 occurrences of the failure.  

While the classifier correctly classified all instances of the failure state, the classifier incorrectly 

classified 603 summary vectors as representing the failure state. This represents a false positive 

rate of 0.82%. 

 

Table 3 Results of Known Failure Detection 

Total Events Known Failure 
Events 

Correctly Classified Incorrectly 
Classified 

73,141 6 6 603 
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6 CONCLUSION 

It was shown that a classifier based on PCA could correctly classify a device as being in 

either a high state of transient load or not in a high state of transient load with a high degree of 

accuracy, confirming Hypothesis 4. Furthermore, it was shown that a classifier trained on one 

device could be applied to a second device, unknown to the classifier, and remain accurate.  

  It was shown that when trained on a known failure event the classifier could identify 

other instances of the same failure, confirming Hypothesis 3. Without the use of a threshold, the 

classifier was able to detect other instances of the failure event with a 100% success rate. 

However, the same test experienced a false positive rate several orders of magnitude greater than 

the true positive rate. Despite the high false positive rate the ability to detect similar events is 

confirmed. It is likely that more thorough training of the classifier would decrease the false 

positive rate.  

In confirming Hypotheses 3 and 4, Hypothesis 1, which states that Principal Component 

Analysis can be used to classify the state of a system, was confirmed. 

Hypothesis 2, which states that system states or events could be correlated to individual 

principal components, was disproven. While Gopikrishnan (2001) was able to correlate 

eigenvectors from trading activity to market segments, no such correlation was readily apparent 

for system log data. It is believed that this is in part due to the very narrow scope of the testing 

performed. The scope of research was such that only a small number of devices and specific 
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events were examined in detail. To be able to identify such correlations, if they exist, would 

likely require a much greater survey of the system logs. 

Hypothesis 5, which states that unknown failure events could easily be detected, was 

disproven. The classifier was not able to accurately identify unknown failure states. It is believed 

that this failure highlights two shortcomings of the methodology. The first shortcoming is the 

method used to select the training set.  

In order to select a training set, the author selected 100 data points from a year’s worth of 

data, that were intended to represent the two classes: heavily loaded and not heavily loaded. This 

approach resulted in chronologically clustered data points, not necessarily representative of how 

a classifier might be iteratively trained through analyst feedback in a real world implementation. 

Unfortunately, machine-learning methods often provide little, if any, insight into how a result 

was reached, and so the effect of different methods of selecting training data cannot be easily 

determined. 

Another shortcoming of the classifier’s ability to detect previously unknown states is the 

way in which classification is being performed. The binary nature of the classifier allows it to 

only decide upon one class. When attempting to classify a summary vector as one of two sets 

into which all vectors fall, such as heavily loaded and not heavily loaded, this shortcoming is not 

apparent.  

This shortcoming became apparent when attempting to detect occurrences of an event. In 

this set, the training set consisted of 3 classes: loaded, unloaded, and error state. Any given 

summary vector would, by definition, fall into either the loaded or unloaded class while also 

potentially being in a detectable error state. When attempting to classify a summary vector, the 

classifier only allows it to be detected as a single class as the single binary classifier does not 
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allow for a summary vector to receive multiple classifications. As implemented, the classifier 

will assign the vector the classification of the nearest summary vector in the training set. 
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7 FUTURE WORK 

 Future work could attempt to overcome the shortcomings of the classifier. Multiclass 

classification is not a new problem. The presented classifier lends itself well to a multiclass 

classification strategy referred to as one-vs-all. 

 A classifier using a one-vs-all strategy trains a classifier for each class and attempts to 

classify a data point against every class individually. The one-vs-all strategy lends itself well to 

the presented classifier implementation, requiring that multiple, single class classification 

attempts are made in place of the single classification attempt as implemented. 

 A further shortcoming of the classifier is the use of Euclidean distance as a classification 

algorithm. By using Euclidean distance, which classifies based on the nearest neighbor, the 

classifier is subject to bias from classifications that are more heavily or sparsely represented in 

the training set. Should an event of class ‘A’, as a result of chance or over representation, be the 

lowest Euclidean distance from a training set event of class ‘B’, it would be classified incorrectly 

as class ‘B’. Compounding this problem would be a feedback loop that accepts the incorrectly 

classified event into the training set, potentially resulting in additional incorrect classifications.  

The classifier could also be improved by using an algorithm such as k-Nearest Neighbors, 

which takes into account multiple nearest neighbors in classification, preventing a single outlier 

event from causing incorrect classifications. 
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APPENDIX A. RESULTS TABLES 

Test against known device when trained against known device 

Components Events Explained 
Variance 

Cumulative 
Variance 

True + False - True - False + Accuracy  

0 100 0 0 0 50 50 0 0.5 

1 100 0.6817139 0.68171396 41 9 49 1 0.9 

2 100 0.0922739 0.77398794 42 8 47 3 0.89 

3 100 0.0603007 0.834288729 47 3 46 4 0.93 

4 100 0.0377505 0.872039309 47 3 44 6 0.91 

5 100 0.0312185 0.903257818 45 5 46 4 0.91 

6 100 0.0257975 0.92905541 43 7 47 3 0.9 

7 100 0.0168097 0.945865167 44 6 45 5 0.89 

8 100 0.0131803 0.959045501 46 4 46 4 0.92 

9 100 0.0115934 0.970638967 48 2 46 4 0.94 

10 100 0.0103138 0.980952803 46 4 46 4 0.92 

11 100 0.0065778 0.987530622 47 3 46 4 0.93 

12 100 0.0042791 0.991809763 47 3 46 4 0.93 

13 100 0.0025550 0.994364803 47 3 46 4 0.93 

14 100 0.0020134 0.996378212 47 3 46 4 0.93 

15 100 0.0013944 0.997772698 47 3 45 5 0.92 

16 100 0.0008847 0.998657405 47 3 45 5 0.92 

17 100 0.0005649 0.99922239 47 3 45 5 0.92 

18 100 0.0004228 0.999645256 47 3 46 4 0.93 

19 100 0.0001844 0.999829754 47 3 46 4 0.93 

20 100 8.84E-05 0.999918139 47 3 46 4 0.93 

21 100 6.45E-05 0.999982614 47 3 46 4 0.93 

22 100 1.74E-05 1 46 4 46 4 0.92 

23 100 9.46E-28 1 46 4 46 4 0.92 

24 100 3.08E-28 1 46 4 46 4 0.92 

25 100 3.91E-33 1 46 4 46 4 0.92 

26 100 3.91E-33 1 46 4 46 4 0.92 

27 100 3.91E-33 1 46 4 46 4 0.92 
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28 100 3.91E-33 1 46 4 46 4 0.92 

29 100 3.91E-33 1 46 4 46 4 0.92 

30 100 3.91E-33 1 46 4 46 4 0.92 

 

Test against unknown device when trained against known device 

Components Events Explained 
Variance 

Cumulative 
Variance 

True + False - True - False + Accuracy  

0 100 0 0 0 50 50 0 0.5 

1 100 0.6817139 0.68171396 48 2 29 21 0.77 

2 100 0.0922739 0.77398794 50 0 27 23 0.77 

3 100 0.0603007 0.834288729 50 0 30 20 0.8 

4 100 0.0377505 0.872039309 50 0 26 24 0.76 

5 100 0.0312185 0.903257818 50 0 30 20 0.8 

6 100 0.0257975 0.92905541 46 4 40 10 0.86 

7 100 0.0168097 0.945865167 45 5 43 7 0.88 

8 100 0.0131803 0.959045501 36 14 49 1 0.85 

9 100 0.0115934 0.970638967 36 14 49 1 0.85 

10 100 0.0103138 0.980952803 36 14 49 1 0.85 

11 100 0.0065778 0.987530622 36 14 49 1 0.85 

12 100 0.0042791 0.991809763 36 14 50 0 0.86 

13 100 0.0025550 0.994364803 38 12 48 2 0.86 

14 100 0.0020134 0.996378212 38 12 48 2 0.86 

15 100 0.0013944 0.997772698 38 12 48 2 0.86 

16 100 0.0008847 0.998657405 38 12 48 2 0.86 

17 100 0.0005649 0.99922239 38 12 48 2 0.86 

18 100 0.0004228 0.999645256 38 12 48 2 0.86 

19 100 0.0001844 0.999829754 38 12 48 2 0.86 

20 100 8.84E-05 0.999918139 38 12 48 2 0.86 

21 100 6.45E-05 0.999982614 38 12 48 2 0.86 

22 100 1.74E-05 1 38 12 48 2 0.86 

23 100 9.46E-28 1 38 12 48 2 0.86 

24 100 3.08E-28 1 38 12 48 2 0.86 

25 100 3.91E-33 1 38 12 48 2 0.86 

26 100 3.91E-33 1 38 12 48 2 0.86 

27 100 3.91E-33 1 38 12 48 2 0.86 

28 100 3.91E-33 1 38 12 48 2 0.86 

29 100 3.91E-33 1 38 12 48 2 0.86 

30 100 3.91E-33 1 38 12 48 2 0.86 
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Test against known device when trained against known and unknown devices 

Components Events Explained 
Variance 

Cumulative 
Variance 

True + False - True - False + Accuracy 

0 100 0 0 0 50 50 0 0.5 

1 100 0.6326627 0.632662717 41 9 47 3 0.88 

2 100 0.0932007 0.72586345 44 6 47 3 0.91 

3 100 0.0536054 0.77946888 44 6 47 3 0.91 

4 100 0.0515263 0.830995207 47 3 44 6 0.91 

5 100 0.0430099 0.874005118 47 3 46 4 0.93 

6 100 0.0274989 0.901504101 48 2 42 8 0.9 

7 100 0.0208315 0.922335651 46 4 43 7 0.89 

8 100 0.0176335 0.939969237 46 4 45 5 0.91 

9 100 0.0122180 0.952187326 47 3 43 7 0.9 

10 100 0.0105326 0.962719999 46 4 43 7 0.89 

11 100 0.0094331 0.972153138 46 4 45 5 0.91 

12 100 0.0081938 0.980346993 45 5 45 5 0.9 

13 100 0.0063329 0.986679983 46 4 46 4 0.92 

14 100 0.0035834 0.990263457 47 3 46 4 0.93 

15 100 0.0027876 0.993051088 47 3 46 4 0.93 

16 100 0.0026667 0.995717868 47 3 46 4 0.93 

17 100 0.0012387 0.996956583 47 3 45 5 0.92 

18 100 0.0011460 0.998102646 47 3 45 5 0.92 

19 100 0.0007410 0.998843694 47 3 45 5 0.92 

20 100 6.70E-04 0.999513337 47 3 46 4 0.93 

21 100 2.43E-04 0.999756699 47 3 46 4 0.93 

22 100 1.41E-04 0.999897441 47 3 46 4 0.93 

23 100 8.88E-05 0.999986219 47 3 46 4 0.93 

24 100 1.38E-05 1 46 4 46 4 0.92 

25 100 2.15E-26 1 46 4 46 4 0.92 

26 100 9.03E-28 1 46 4 46 4 0.92 

27 100 4.46E-33 1 46 4 46 4 0.92 

28 100 4.46E-33 1 46 4 46 4 0.92 

29 100 4.46E-33 1 46 4 46 4 0.92 

30 100 4.46E-33 1 46 4 46 4 0.92 

Detection against unknown device when trained on known and unknown devices 

Components Events Explained 
Variance 

Cumulative 
Variance 

True + False - True - False + Accuracy  

0 100 0 0 0 50 50 0 0.5 
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1 100 0.6326627 0.632662717 37 13 28 22 0.65 

2 100 0.0932007 0.72586345 0 50 50 0 0.5 

3 100 0.0536054 0.77946888 10 40 50 0 0.6 

4 100 0.0515263 0.830995207 40 10 49 1 0.89 

5 100 0.0430099 0.874005118 41 9 46 4 0.87 

6 100 0.0274989 0.901504101 36 14 49 1 0.85 

7 100 0.0208315 0.922335651 36 14 48 2 0.84 

8 100 0.0176335 0.939969237 36 14 49 1 0.85 

9 100 0.0122180 0.952187326 36 14 49 1 0.85 

10 100 0.0105326 0.962719999 36 14 49 1 0.85 

11 100 0.0094331 0.972153138 38 12 47 3 0.85 

12 100 0.0081938 0.980346993 36 14 48 2 0.84 

13 100 0.0063329 0.986679983 36 14 48 2 0.84 

14 100 0.0035834 0.990263457 36 14 50 0 0.86 

15 100 0.0027876 0.993051088 37 13 49 1 0.86 

16 100 0.0026667 0.995717868 38 12 48 2 0.86 

17 100 0.0012387 0.996956583 38 12 48 2 0.86 

18 100 0.0011460 0.998102646 38 12 48 2 0.86 

19 100 0.0007410 0.998843694 38 12 48 2 0.86 

20 100 6.70E-04 0.999513337 38 12 48 2 0.86 

21 100 2.43E-04 0.999756699 38 12 48 2 0.86 

22 100 1.41E-04 0.999897441 38 12 48 2 0.86 

23 100 8.88E-05 0.999986219 38 12 48 2 0.86 

24 100 1.38E-05 1 38 12 48 2 0.86 

25 100 2.15E-26 1 38 12 48 2 0.86 

26 100 9.03E-28 1 38 12 48 2 0.86 

27 100 4.46E-33 1 38 12 48 2 0.86 

28 100 4.46E-33 1 38 12 48 2 0.86 

29 100 4.46E-33 1 38 12 48 2 0.86 

30 100 4.46E-33 1 38 12 48 2 0.86 

Detection of known failure events 

Total Events: 73,141 

Total Classified: 609 

Known Similar Events Correctly Classified: 6 

Incorrectly Classified: 603 
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APPENDIX B. SOURCE CODE 

Summary Vector Generation 

#!/usr/bin/python -u 
import requests 
import json 
import datetime 
from requests.auth import HTTPDigestAuth 
 
debug=False 
count=0 
 
searchHead="172.262.23.0" 
 
workingIndex=None 
startTime=None 
buildingsList=[] 
 
 
LSBquery={ 
  "query": { "match": { "dev.raw": "LSB-1" } } 
} 
 
 
 
 
def sendQuery(query, index, count): 
 request=json.dumps(query) 
 if count == 0: 
  url = 'http://'+searchHead+':9200/'+index+'/_search?search_type=count&pretty' 
 else: 
  url = 'http://'+searchHead+':9200/'+index+'/_search?size='+str(count)+'&pretty' 
 r = requests.post(url , auth=('user', 'asdfdfsasdfasdfa'), data=request) 
 t=json.loads(r.text) 
 return t 
 
 
temp = sendQuery(LSBquery, "lane-thesis-meta-2015", 200000) 
for doc in temp['hits']['hits']: 
 print 
'['+doc['_id']+','+str(doc['_source']['@timestamp'])+','+str(doc['_source']['bucketTime'])+','+str(doc['_source']['dev'])+','+s
tr(doc['_source']['building'])+','+str(doc['_source']['severityTotal'])+','+str(doc['_source']['S0'])+','+str(doc['_source']['S1'])
+','+str(doc['_source']['S2'])+','+str(doc['_source']['S3'])+','+str(doc['_source']['S4'])+','+str(doc['_source']['S5'])+','+str(do
c['_source']['S6'])+','+str(doc['_source']['S7'])+','+str(doc['_source']['iap1'])+','+str(doc['_source']['iap2'])+','+str(doc['_sou
rce']['iap3'])+','+str(doc['_source']['iap4'])+','+str(doc['_source']['iap5'])+','+str(doc['_source']['iap6'])+','+str(doc['_source'
]['iap7'])+','+str(doc['_source']['iap8'])+','+str(doc['_source']['iapTotal'])+','+str(doc['_source']['auths'])+','+str(doc['_sourc
e']['deauths'])+','+str(doc['_source']['associated'])+','+str(doc['_source']['associationsOverhead'])+','+str(doc['_source']['
disassociated'])+','+str(doc['_source']['disassociationsOverhead'])+','+str(doc['_source']['reassociated'])+','+str(doc['_so
urce']['reassociationsOverhead'])+','+str(doc['_source']['MACs'])+','+str(doc['_source']['IDSevents'])+','+str(doc['_sourc
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e']['rateChange'])+','+str(doc['_source']['signalLevelWarnings'])+','+str(doc['_source']['timeouts'])+']' 
 
exit() 

Test Run 

#!/usr/bin/python 
import time 
import numpy as np 
from sklearn import decomposition 
from sklearn import datasets 
 
import random 
 
runtype=1 
fname="stage1data.csv" 
fname2="stage1data.csv" 
 
def arraystr2num(a): 
 b=[] 
 for val in a: 
  b.append(int(val)) 
 return b 
 
def calcPCA(spaceIn, comps): 
        pca = decomposition.PCA(n_components=comps) 
        pca.fit(spaceIn) 
        return pca 
 
 
def sortToLists(id, values, time): 
 for entry in eMaster: 
  if id == entry[0]: 
   elMaster.append([id, entry[1], values]) 
 if runtype == 2 or runtype == 3 or runtype == 13: 
  for entry in testSet: 
   if id == entry[0]: 
    testMaster.append([entry[1],[id, values, time]]) 
 
def transformTrainingSet(transMatrix, trainingSet): 
 for a in trainingSet: 
                tlMaster.append([a[1], transMatrix.transform(a[2])]) 
 
 
def closestGroup(transMatrix, entry): 
        bucket= transMatrix.transform(entry[1]) 
        closest=909999 
 closestClass=0 
        for a in tlMaster: 
                dist = np.linalg.norm(a[1]-bucket) 
                if dist < closest: 
                        closest = dist 
   closestClass = a[0] 
        if closest < threshold: 
  if runtype==1: 
   return entry[2]+','+str(closestClass)+','+str(closest) 
  if runtype==2 or runtype==3: 
   return [ closestClass, closest ] 
 
fname="stage1data.csv" 
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threshold = 99 
 
e1=['AVZ3NxEEWoI242VYAc5w', 
'AVZ9ysejNaw7GqRUImyB', 
'AVZ-8YcFNaw7GqRUWrDR', 
'AVaEOt_uIWASxjuiMPi5', 
'AVZ9y_bSNaw7GqRUIqjj'] 
e2=['AVZ_C0U2I5_rTozncrcU', 
'AVZ6E2VAWoI242VYmItD', 
'AVZ6E6ulWoI242VYmJjV'] 
 
e3=['AVZ3lROaWoI242VYFGQX', 
'AVZ96BCNI5_rToznN29T', 
'AVZ95_iII5_rToznN2m3'] 
 
e4=['AVZ24icNWoI242VY8ZEg'] 
 
el1=[] 
el2=[] 
el3=[] 
el4=[] 
 
tl1=[] 
tl2=[] 
tl3=[] 
tl4=[] 
 
eMaster=[] 
for a in e1: 
 eMaster.append([a,"1"]) 
for a in e2: 
        eMaster.append([a,"2"]) 
for a in e3: 
        eMaster.append([a,"3"]) 
for a in e4: 
        eMaster.append([a,"4"]) 
 
elMaster=[] 
tlMaster=[] 
 
testSet=[] 
 
test1=['AVZ-8jXTNaw7GqRUWtSK', 
'AVaE66RbNaw7GqRUxQL1', 
'AVZ9y0m-Naw7GqRUIoWY', 
'AVaE7HylNaw7GqRUxTFt'] 
 
test2=['AVZ44pI_WoI242VYWZmz', 
'AVZ_CpzgI5_rTozncpGe', 
'AVZ_CocvI5_rToznco0D'] 
 
test3=['AVaEBVpDIWASxjuiJb8L', 
'AVZ48wNuWoI242VYXSMr', 
'AVZ95-4BI5_rToznN2cN', 
'AVZ4tvQgWoI242VYUEm4'] 
 
for a in test1: 
        testSet.append([a,"1"]) 
for a in test2: 
        testSet.append([a,"2"]) 
for a in test3: 
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        testSet.append([a,"3"]) 
 
testMaster=[] 
 
 
 
 
def getSamples(fname): 
 with open(fname) as f: 
  content = f.read().splitlines() 
 
 entries=[] 
 for line in content: 
  aaaa=line.split('[')[1].split(']')[0].split(',') 
  meta=aaaa[0:5] 
  values=aaaa[5:] 
  entries.append([meta,arraystr2num(values)]) 
 del content 
 return entries 
 
def calcTransform(entries): 
 out=[] 
 out2=[] 
 for entry in entries: 
  tmp=entry[1] 
  total=entry[1][0] 
  for i in range(1,31): 
   tmp[i]=float(tmp[i])/float(total) 
  entry.append(tmp) 
  entry[2].pop(0) 
  out.append(entry[2]) 
  out2.append([entry[0][0], entry[2], entry[0][1]]) 
  sortToLists(entry[0][0], entry[2], entry[0][1]) 
 del entries 
 pcainner=[] 
 for a in range(0,31): 
   pcainner.append(calcPCA(out, a)) 
 del out 
 print len(pcainner) 
 return [out2, pcainner] 
 
 
 
[out2, pca] = calcTransform(getSamples(fname)) 
 
 
classifications=[] 
 
if runtype == 1: 
 transformTrainingSet(pca[24], elMaster) 
 for a in out2: 
  tmp =closestGroup(pca[24], a) 
  if tmp: 
   print tmp 
 exit() 
del out2 
 
if runtype == 2: 
 transformTrainingSet(pca[24], elMaster) 
 results=[] 
 for a in testMaster: 
  tmp=closestGroup(pca[24], a[1]) 



www.manaraa.com

 60 

  if tmp: 
   results.append([a[1][0],a[0],int(tmp[0]),tmp[1]]) 
 
 print results 
 score=[] 
 score.append([24,len(results)]) 
 summary=[0,0,0,0] 
 for i in results: 
  if int(i[1]) == 1: 
   if int(i[2]) == 1: 
    summary[0]=summary[0]+1 
   else: 
    summary[1]=summary[1]+1 
  else: 
   if int(i[2]) != 1: 
    summary[2]=summary[2]+1 
   else: 
    summary[3]=summary[3]+1 
 score.append(summary) 
 print score 
 
if runtype == 3: 
 fullscore=[] 
 for y in range(0,31): 
  tlMaster=[] 
  transformTrainingSet(pca[y], elMaster) 
  results=[] 
  for a in testMaster: 
   tmp=closestGroup(pca[y], a[1]) 
   if tmp: 
    results.append([a[1][0],a[0],int(tmp[0]),tmp[1]]) 
  
  score=[] 
  score.append([y,len(results)]) 
  summary=[0,0,0,0] 
  for i in results: 
   if int(i[1]) == 1: 
    if int(i[2]) == 1: 
     summary[0]=summary[0]+1 
    else: 
     summary[1]=summary[1]+1 
   else: 
    if int(i[2]) != 1: 
     summary[2]=summary[2]+1 
    else: 
     summary[3]=summary[3]+1 
  score.append(summary) 
  fullscore.append(score) 
 for a in pca[30].explained_variance_ratio_: 
  print a 
 print fullscore 
 
 
if runtype == 13: 
 
 [tmpttt, pcattt] = calcTransform(getSamples(fname2)) 
 del tmpttt 
 del pcattt 
 
 
        fullscore=[] 
        for y in range(0,31): 
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                tlMaster=[] 
                transformTrainingSet(pca[y], elMaster) 
                results=[] 
                for a in testMaster: 
                        tmp=closestGroup(pca[y], a[1]) 
                        if tmp: 
                                results.append([a[1][0],a[0],int(tmp[0]),tmp[1]]) 
 
                score=[] 
                score.append([y,len(results)]) 
                summary=[0,0,0,0] 
                for i in results: 
                        if int(i[1]) == 1: 
                                if int(i[2]) == 1: 
                                        summary[0]=summary[0]+1 
                                else: 
                                        summary[1]=summary[1]+1 
                        else: 
                                if int(i[2]) != 1: 
                                        summary[2]=summary[2]+1 
                                else: 
                                        summary[3]=summary[3]+1 
                score.append(summary) 
                fullscore.append(score) 
        for a in pca[30].explained_variance_ratio_: 
                print a 
        print fullscore 
 
 
 
 
exit() 
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